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ABSTRACT over object trajectories spanning the
Radar tracking performance was compared tracking interval, and initial state
among two choices of statistical filtering estimation was based on convergence to the
algorithms for the noisy measurements of best object path.
exo-atmospheric objects in ballistic motion.
Such motion is characteristic of satellites Results were obtained for both algorithms
and missiles. Object position and velocity performing in a desktop program with a
were governed by the nonlinear dynamics reasonable degree of radar systems
of body motion in a central force field, and modeling, and in a comprehensive mission
measurements were modeled as nonlinear simulator where radar system errors were
observations of those object motions in represented in greater detail. Those
Cartesian coordinates, included radar-cross-section fluctuations,

scan angle loss, antenna gain patterns, radar
The two choices of statistical filtering signal-to-noise sensitivity, monopulse
algorithms were distinguished by their measurement errors, and front-end noise.
method of handling a sequence of noisy The BLS algorithm was seen to converge
measurements. The first processed faster, and predict more accurate 1-sigma
measurements, one-at-a-time, in a values, than the EKF in all comparisons.
sequential recursive estimation using the
Extended Kalman Filter (EKF), and the
second processed that same sequence of INTRODUCTION
measurements, simultaneously, in a batch- Batch processing, as an alternative to
least-squares (BLS) estimation algorithm, minimum-variance statistical filtering, was

described in Reference [1] (Chang) where
Both algorithms used first-variation it was applied to estimation of ballistic
approximations of the nonlinear trajectories with Angle-Only tracking.
observations and error dynamics of object Least-squares iterations were used to
motion. Taylor series expansions were converge to an estimate of the trajectory
centered about the current best estimates of which brought the performance measure to
the state vector. The EKF used those a local extreme point within the space of
approximations to implement the often candidate object paths. Computer trials
referenced linear-minimum-variance demonstrated better performance than with
(Kalman) estimation formulas. The BLS EKF tracking, and estimation-error
processed those same measurements predictions approached the Cramer-Rao
simultaneously in a least-squares search bound.
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Reference [2] (Hough) analyzed EKF In this analysis, the Batch algorithm
object tracking, initialized by a single least- calculated an estimate of the current state,
squares estimate of the object state. and its associated error covariance, in
Analysis of a simplified model (of object synchronism with EKF estimates, so as to
tracking) was used to support the case for compare with EKF convergence. The
batch initialization. EKF performance was Batch algorithm's purpose was to find that
also improved, independently, by modeling estimated object path, ji (t), among many
the distribution of orbit parameter candidate choices over the tracking
variations as they were transformed by interval, such that the measurement
nonlinear object motion dynamics. residual, [z - 2 ], approached a minimum.

Exo-atmospheric free-fall motion, as a
The algorithms of both Chang and Hough unique solution of the initial-value
computed measurement residuals by problem, allowed the identification of k (t)
including only zero-order derivatives of the with k (to) at the initial time, to. Initial state
Taylor series expansion of the observation error, 8x(to), was obtained by multiple
model, iterations, where the prior estimate of

1f(x) = h(i) initial state, i^(to), was updated as:
[ (to)]+ = Ri(to) + 8 (to)

The consequence of that model
approximation was to estimate the state after each iteration to improve the least-
without the benefit of first-order squares estimation of the initial state error.
corrections which lessen the influence of
nonlinear truncation errors. Error Dynamics

Object motion was constrained by the
Reference [3] (Bancroft) used an approach dynamic model of exo-atmospheric free-
similar to that of Chang above to track fall, in the Earth-centered-rotating (ECR)
space objects, offline, with a phased array frame, where Q and g were Earth's rotation
early warning radar. Bancroft's algorithm rate and gravity field, respectively:
differs from Chang's in that it includes dp/dt = v
first-variations of the observation model dv/dt = g - Qx(K7xp) - 2fixv
expansion:

h (x) - h(i) + {h(i )/ax}Sx Filter states, their estimates conditioned on
measurements, Zm , and their estimation

and thus estimates the state with smaller errors were defined as:
truncation errors. It also differs from X = [pTI VT]
Hough's algorithm in that it does an x = E{xlZm}
iterative least-squares search among 8x = X-i
candidate trajectories to converge to that The state estimation error was constrained,
path which brings the performance measure within both algorithms, by the dynamics of
to a local extreme point of the function a first-variation approximation:
space. Those differences appear to be d 6x = f(x)- f(:i) f(8x
responsible for the algorithm's improved dt ax
estimation accuracy in the environment of
nonlinear models of motion dynamics and Solutions, 5x(t) = 1(t, to)&X(to), were
observations. obtained by the transition matrix, (D(t, to),
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implied by those linearized dynamics, and range/Doppler coupling coefficient, 't, to
satisfying: be:

_d___ = Dft )(D__ ) , (D(to, to) =l .zr [r+'tv u

dt ax z=h(x)= zu j=[w [TU

Time histories of :(t) and 1'(t, to) were zi [c2]Tu

obtained by simultaneous solution of their
coupled differential equations over the Measurement sensitivities to state
tracking interval, [to, tm]. Those were used variations were found to be:
in Batch least-squares processing to
estimate the initial state error, 8i(to). U TV 31

Process noise, representing the random az/ax ([CI]T--ZuUT)/r 0T

environment of EKF error dynamics, was J([c2]T-zuT)/r 0T

chosen at a level to partially compensate
for truncation errors resulting from and measurement residuals were
nonlinear approximations. It was assigned, determined by truncating the measurement
as noise in the velocity dynamics equation model beyond first variations:
shown above, to be a small percentage of
the nominal gravity field vector magnitude. = li (x) h( x ) + {I h(: )/ax }I x
The Batch algorithm modeled observations
without dynamic extrapolation between Measurement errors are a function of
them, and thus did not include process tracking waveform parameters, and signal-
noise compensation. to-noise power ratio (SNR). SNR, in turn,

is dependent on object range, r, radar cross-
The gravity field model included the section, a, pulse-width, t, and radar
second spherical harmonic of the Earth's sensitivity, S, resulting from phased array
mass distribution non-homogeneity. That radar power-aperture data. SNR and range
term added only small percentages of and angle observation variances were
variation in the otherwise constant orbit computed for inclusion in both algorithms:
momentum over object tracking intervals.
It seems not to be required in a self SNR = Sa'T/r 4

contained desktop simulation, however, it (r
2  = (c/2BKr)2/2SNR

would be essential to include it when cru2 = av- = (03dB/Km)2/2SNR
making comparisons with other
simulations, or in processing data in terms of radar waveform parameters of
containing those effects, band-width, beam-width, and range-

Observation Model detection and monopulse slope coefficients,

Measurements of range, Zr, and its unit- B, 03dB Kr, and Km, respectively.

vector projections into the plane of the Batch vs. EKF
phased array radar, zu and zv, were modeled The EKF propagates the filter state
as nonlinear observations of states, in terms between measurements, and incorporates
of the ob ject range unit vector, u = rir, measurements sequentially, with the error
rows, [ci] , of the ECR -to-phased-array- dynamics and observation models,
plane coordinate rotation, [C~f], and the respectively. It is an implementation of the
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often referenced linear-minimum-variance
(Kalman) formulas, adapted by first- Sz(ti) = [a-'][z(ti) - h(i (ti))]
variation approximations of the nonlinear A(ti) = [-] [Dh( k (ti))/Ix]O(ti, t,)
models, centered at the current state
estimate, and described in Reference [4] results in:
(Jazwinski). The Batch algorithm, in Sz(ti) = A(ti)Sx(to)
comparison, processes those same
measurements simultaneously via iterative and adjoining the matrix rows generated by
least-squares estimation. each measurement difference, 8z(ti), and its

associated time tag, ti, produces the
composite array of equations indicated:

ZI, Z2 ... Zm EKF Xi
Algorithm 8z(t1 ) A(t1 )8x(to)

8z(t2) A(t2)Sx(to)
Z2 Z=A (.Batch R (t) , Z= A~x(to)

Algorithm
5 Z(tm) A(tm)5X(to.)f

Z.m

Figure-i Comparison of Measurement That model was used in multiple least-
squares iterations, minimizing each

Processing for Batch and EKF Tracking IZ - A8i(to)I 2, and looking for convergence

An overview of the comparison of of IZI to a minimum as 8x(to) approached

measurement processing among the two zero.

algorithms is shown in Figure-1. Batch
algorithm estimations were made in Each least-squares iteration sequence
parallel with those of the EKF for sought that estimate of initial state error
comparison of estimation error time which satisfied the Normal equations:
histories. Formation of the Batch T

algorithm's least squares array was based A z = ATA~x(t°)
on the observation model:

Rather than implement the Normal
S= ha(x)= h(k) + {0h(*)/0x}6x equations, it was preferable to use an=h(x) (i )+ I D(, t0)6xt 0  effective numerical procedure to form the

- h(i ) + { h(i )/Dx }(t, to)Sx(to) decomposition of the system matrix into its
orthogonal and upper triangular factors, H

The Batch algorithm's goal of seeking that and Ur pel andslve for b

object path, i, which drives the residual ack substitution:

toward zero, z - lh (x ) = 0, suggested a

regrouping of terms: Z = AS (to) = HU&*(to)
z - h(i ) = {I h( i )/ax } (D(t, to)&X(to) HITH = in, U, upper triangular

HTz = U6 *(to)

Redefining the terms above, and using a

diagonal matrix of reciprocals of The Householder method, Reference [5]
measurement noise standard deviations, (Golub and van Loan), was used to factor
[cf-], to normalize the least-squares model: the least-squares array.
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Desktop Analysis elements of the filter covariance matrix.
Motion of a single object was simulated Batch covariances were calculated from the
with orbit dynamics. Measurement errors least-squares model coefficient matrix, A,
were modeled with a constant RCS and as:
pulse-width range equation. The EKF was
initialized with a monopulse pair of range C(t)Batch = CP(t, t.) [ATA]-I1(t, to)
and angle measurements, estimating range
rate as the quotient of range differences and EKF position errors were seen to exceed
their time-tag difference. Angle rates were their statistically predicted 1-sigma values
declared to be zero. Although the Batch more often, and converge more slowly than
initialization design included the EKF first those of the Batch algorithm.
estimate, tests have shown that Batch could
start as well in some instances with that Figure-3 is the velocity estimation error
same EKF monopulse-pair initialization, time history corresponding to the same

Velociy Estimation Error. 10 Trial Monte-Carlo Seluence

Figure-2 is a position estimation error time 25

history of an object in exo-atmospheric
Position Estimation Error, 10 Trial Monte-Carlo Sequence 8

5000 i
4500 E'

-64000 -10

I00 EKF Errr EKF I-Sigma

.930DO Batch I-Sigma 'EKF Erro

0[ Batch Error

2000 000

001 -40Tim0 0 0 " m 700 7 0)Batc 1-' -m KF1S.im Figure-3 Desktop Simulation of lO-Trial
400 40,-s 1 51 550 Monte-Carlo Averaged Velocity Estimation4W0 4W 5WO 55W 6W 4350 "7W 75W

Time (seconds) Errors for Batch and EKF
Figure-2 Desktop Simulation of 10-Trial
Monte-Carlo Averaged Position Estimation sequence of computer trials described in
Errors for Batch and EKF Figure-2 above. Batch estimates, in

comparison with those of the EKF, were
free-fall, tracked at ranges of 2300-3300 again seen to converge faster and remain
km. The tracking signal-to-noise ratio closer to their predicted 1-sigma values.
ranged from 10 - 15 dB. EKF updates EKF predictions of position error were
were at a frequency of once per second optimistic (smaller) in comparison with
while the Batch algorithm was invoked true error paths. After 200 seconds of
once per 10 seconds. The error curves tracking, EKF estimation errors were at a
were the magnitudes of differences of level of about 10 meters/sec. At that same
filter state estimations with true states, and point, Batch errors were only 2.5
the 1-sigma curves were the square root of meters/sec.
the sum of corresponding diagonal
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Optimistic predictions of EKF estimation Estimadon irror Time istories

accuracy, such as were seen in the first 100 Ioo I 1111
seconds of position estimation, have 9 - t0

ominous implications for mission 80 t : • -te, r_ gsS,-,, \ i {t \ ! HKF Predibctd l-Sigýa

operations where it is essential to 70 I I-Sigqs

accurately assess the quality of object 60 I I{ t ! , •}! 1 / LS Estin tOn Etro4states. In those instances the Batch (m/s) 5 A;06'_sin•0o _._._
ELS Sampled I-Sigrad

algorithm's covariance data will be more 40_
reliable than that of the EKF. 3 \ j__. .

20 . ,

Large magnitudes of error (on the order of j __"

km/sec, not seen on the graphs) were I
present in the initial tracking intervals of 4 550 600 650 700 750 800

both desktop and mission simulator time Tracking Interal Time (seconds)

histories. Those initial errors were quite
large due to the conspiracy of nonlinear Figure-4 Mission Simulation of 100Monte-
approximation and cross-range errors. The Carlo Trials of Velocity Estimation Error
desktop EKF design, in an attempt to simulator. Tracking signal-to-noise ratio
mitigate the influence of those errors, was a minimum of 10 dB and the average
included decoupling of range and angle object range was about 2500 km. EKF
errors within the update algorithm. updates were at a frequency of one per

Reference [6] (Daum and Fitzgerald) second while the Batch algorithm was

discuss the magnification of angle errors by invoked once per 10 seconds. The graphs

object range. A milli-radian of angle error were a composite of 100 Monte-Carlo

multiplied by 1000 kilometers of range to trials, showing averages of errors, 1-sigma

the object, for example, results in a filter predictions, and sampled-standard-

kilometer of cross range error. That deviations.

magnification error also affected velocity Batch estimates, the lower grouping of
estimation, and thus presented a challenge curves, were again seen to converge faster
to estimation convergence, within both and remain closer to their statistically
algorithms. predicted 1-sigma values when compared

Mission Simulator Performance with those of the EKF. The EKF 1-sigma
The mission simulator program included predictions, expected to be near the upper
most radar system errors, and motion grouping of curves, were instead within the
dynamics such as Earth's non-uniform mass lower grouping of Batch curves, indicating
distribution, Earth's rotation, fluctuating an error convergence, after two minutes of
target RCS, antenna gain patterns, front- tracking, of about 20 meters/sec less than

targt RS, ntena ain attrns frnt- was actually taking place. After about 200end RF noise, radar-resource allocation and was they ding be.twenredicted
scheduling, and multiple target detections- seconds, the differences between predictedassociation-with-tracks, and actual errors persisted at about 10

meters/sec. That was a further

Figure-4 shows a velocity estimation error demonstration of the EKE algorithm's

time history for an exo-atmospheric free- occasional overly-optimistic assessment of

fall object generated in the mission its own estimation convergence.
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The mission simulator EKF did not include algorithm, implemented it in a BMEWS
the benefit of range-angle covariance radar, and demonstrated its utility in the
decoupling as did the desktop EKF offline tracking of space objects. Thong
algorithm. Its initial convergence time Pham, Raytheon, Technical Staff member,
history could have been improved with did a complete modeling and simulation of
some decoupling introduced, however, it is the algorithm, and provided the initial
likely that convergence near the end of software implementation for the mission
tracking would not have changed. That simulator. Mission simulator computer
was seen in desktop EKF trials with trials were accomplished with much help
varying degrees of decoupling, from Dan Pulido of General Dynamics, and

Dmitri Tsaparas, and Dan Lawrence of
XonTech, Inc.

CONCLUSIONS
Batch algorithm estimation of radar object REFERENCES
tracking was compared with EKF tracking [1] Chang, C. B., "Ballistic Trajectory
of the same object. Comparisons were Estimation with Angle-Only
made in a desktop simulation of an object Measurements", IEEE Automatic Control
in exo-atmospheric free-fall. The radar Vol. 25, No. 3, June, 1980, P.474-480
was modeled by the range equation with
constant RCS and pulse-width. [2] Hough, M. E. "Improved Performance
Observations were represented by models of Recursive Tracking Filters using Batch
of monopulse range and angle Initialization and Process Noise
measurement errors in terms of SNR. Adaptation", AIAA Journal of Guidance,

Control, and Dynamics, Vol. 22, No. 5
Comparisons were also made in a more September/October 1999, p. 676-682
comprehensive mission simulator which
included Earth's mass distribution and [3] Bancroft, P., "Improved Prediction
rotation, fluctuating targets, antenna gain Accuracy Algorithm for UEWR IPT",
patterns, RF noise, resource allocation and Raytheon Final Report for XonTech, Inc.,
scheduling, and multiple-target detections- Contract 4-029394-115-8, October 1998
to-tracks association. The mission
simulator generated a 100 Monte-Carlo [4] Jazwinski, A., "Stochastic Processes
sequence of tracking interval time histories and Filtering Theory", Academic Press,
to lend further support to the ten-trial 1970
desktop results.

[5] Golub G. H., and van Loan, C. F.
Both the desktop and the mission "Matrix Computations", Johns Hopkins
simulators showed that, in comparison with University Press, 1983
EKF, the Batch algorithm converged faster,
more accurately, and closer to its own self- [6] Daum, F. and Fitzgerald, R. J.,
assessed 1-sigma value. "Decoupled Kalman Filters for Phased

Array Radar Tracking", IEEE AC Vol. 28
No.3, March, 1983
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